

12/10/2012 Page 1

 DLCGI Advanced Uses

Using DLCGI to achieve single sign-on with The Diver Solution

In situations where authentication to DiveLine needs to be integrated

with an existing authentication scheme, we provide "DLCGI", the

DiveLine-Common Gateway Interface interfacing module. The "Common

Gateway Interface" is a standard for interfacing external scripts and

programs with a web server.

How DLCGI works

When dlcgi.exe is executed by the webserver, in the context of a user

that the web server has already authenticated, it obtains a

limited-lifetime one-time password from DiveLine. This password can be

passed, via web page redirects, custom web page scripting, etc., to

DivePort, NetDiver, or even ProDiver to allow the user to login.

The typical strategy for using DLCGI is:

1. Configure DiveLine to accept DLCGI requests from your webserver.

2. Install dlcgi.exe in a scripts directory (e.g. /cgi-bin/) on your
CGI-compliant webserver (e.g. IIS, Apache). You configure the name

of your DiveLine server and other parameters using dlcgi.cfg in the

same directory as the executable.

3. Restrict access to this script so that the webserver will only
execute it when the user has already authenticated (e.g. Domain

account).

Typical uses

• DivePort: Users go to the DivePort site, and are redirected to

another URL for authentication. That URL, which runs dlcgi.exe,

redirects the user back to the DivePort URL with a one-use

authentication token.

• ProDiver: When ProDiver connects to DiveLine, if configured with a

DLCGI URL, it will access the URL in "raw" mode (see below) to

obtain a parse-able result file containing a one-use DiveLine

authentication token. This uses Internet Explorer components

embedded in the Operating System for web server access (and cookie

sharing).

• The templating support also permits "click on this link to start

[client], authenticated" <a> elements on webpages.

12/10/2012 Page 2

Non-CGI environments

If you are operating in an environment where the web server controlling

authentication does not support CGI scripts, you need to do something

different. Essentially, you need to write a wrapper around dlcgi.exe that

is compatible with your server platform.

You need to create a script / servlet / etc. which handles a URL and will

act like the DLCGI URL we normally use. In its simplest form, the script

must:

 - Perform authentication (if not already handled by the platform at the

point it is executing).

 - Setup some environment variables (below) to emulate the CGI interface.

 - Invoke dlcgi.exe.

 - Send dlcgi's output unprocessed as the result of the request.

Advanced forms would include things like dynamically constructing the

resulting page, rather than relying on dlcgi's templating and AJAX

options.

Technical information about invoking dlcgi.exe

When dlcgi starts, it expects information to be passed to it in

accordance with the standard Common Gateway Interface. In some cases, you

may need to specify some of this information manually, depending on how

dlcgi.exe is invoked. The following information is passed to DLCGI via

environment variables:

• REMOTE_USER = name of DiveLine user to grant access to (usually

matches username used to login on website).

• QUERY_STRING = used in advanced/debugging uses of dlcgi. "raw" will

have dlcgi print the one-time username and password in a simple

format which can be parsed by a program. It will also include

debugging/configuration information.

• PATH_INFO = name of a template file to use. Templates are text

files (usually .html) which dlcgi will substitute-in the username

and password into, to allow execution of DivePort, NetDiver, etc.

For instance, the DivePort template file just redirects the user to

DivePort, passing the one-time authentication token (user/pass) in

the process.

During development, it is possible to set these environment variables and

run dlcgi.exe from a command-prompt to see what sorts of output it

generates. The output is always a webpage to display, except in "raw"

mode which produces a plain text file.

12/10/2012 Page 3

Wrapping the DLCGI script for other environments

Here are some hints on wrapping the execution of our CGI script to fit

other execution environments. This would be needed anytime the webserver

either isn't CGI compliant, or the built-in web server authentication is

not being used, but rather some other system is in use. Note that these

are not fully tested programs, just suggestions.

1. Create a server-side script in the technology appropriate to your
webserver (e.g., ASP, ASP.NET, PHP, Java, etc.). This script will be

executed by the web server in response to a request for a particular

URL, defined by you, which we will call the "Start DivePort URL." For

example: https://yourserver/scripts/run-diveport.asp

Be sure to put the script at an appropriate place in the file system

on the web server to match the desired URL.

2. Make sure that access to the script, via its URL, is treated as
protected content by your web server / portal system. That is,

attempts to access the URL directly without logging in first will

prompt you to login.

3. Your script should perform the following tasks:

A) Lookup the username associated with the current web server session.
This is the part where you interface with your own authentication

scheme.

B) Fetch the query string from the URL in the HTTP request that the

script is being called to handle. We will pass this through unchanged

to DLCGI via an environment variable when we execute it.

In ASP:

Request.ServerVariables("QUERY_STRING")

In PHP:

$_SERVER['QUERY_STRING']

In a Java Servlet:

javax.servlet.http.HttpServletRequest's getQueryString() method

C) Fetch the extra path information from the URL in the HTTP request

that the script is being called to handle. We will pass this through

unchanged to DLCGI via an environment variable when we execute it.

In ASP:

Request.ServerVariables("PATH_INFO")

In PHP:

$_SERVER['PATH_INFO']

In a Java Servlet:

javax.servlet.http.HttpServletRequest's getPathInfo() method

https://yourserver/scripts/run-diveport.asp

12/10/2012 Page 4

D) Invoke the "dlcgi.exe" (or just "dlcgi" on Unix) executable. You

need to set some environment variables for the execution of this

script, in compliance with the W3C's Common Gateway Interface (CGI)

specification (see following tips).

 Namely:

 REMOTE_USER - the username determined in step A.

 QUERY_STRING - the query string determined in step B.

 PATH_INFO - the extended path information determined in step C.

The output of running dlcgi (which goes to the standard output

stream) is the HTML web page your script should produce.

Tips on running external executables with environment variables

In ASP:

Look into something like this pattern (or better yet, use ASP.NET's

 System.Diagnostics.Process)

 Set shellObj = Server.CreateObject("WScript.Shell")

 Set environment = shellObj.Environment("PROCESS")

 environment("REMOTE_USER") = username

 environment("QUERY_STRING") = query_string

 environment("PATH_INFO") = path_info

 Set cmdObj = shellObj.Exec("C:\Path\to\dlcgi.exe")

 response.write cmdObj.StdOut.Readall()

In PHP, use this pattern:

 putenv("REMOTE_USER=$username");

 putenv("QUERY_STRING=$query_string");

 putenv("PATH_INFO=$path_info");

 system("C:\\path\\to\\dlcgi.exe");

In a Java servlet:

See java.lang.Runtime.exec(), or better, in Java 1.5 and newer,

java.lang.ProcessBuilder. Both have mechanisms for passing environment

variables to a program you which to execute.

12/10/2012 Page 5

Testing DLCGI from the command-line

SETUP

1) Determine the name and port number of your DiveLine server, and the

 base URL for the Portal you wish to access.

 (Example: DiveLine: <server>.org:2130

 DivePort: https://<server>/PPA)

2) Configure that DiveLine to accept DLCGI "gateway" requests from the

IP address of the machine you are testing from. Modify DiveLine's

atlcfg.cfg -- put this value in the "main" section:

 gateway_ips = {

 "hostname-or-ip-address",

 },

3) Configure dlcgi.cfg.

 Place dlcgi.exe in a directory and create a text file called

 dlcgi.cfg in the same directory with content similar to this:

 version "1";

 // Computer generated object language file

 object 'DCFG' "main" {

 diveline="<server>.org:2130",

 template_directory="C:\\PATH\\TO\\TEMPLATEDIR",

 };

 Correct the DiveLine entry. The template directory will

 be the directory that contains templates; it can be wherever you

 want, so long as dlcgi.exe can read it. Note the use of two

 backslashes in path elements.

4) Choose a username which is defined on DiveLine to test with.

 Example: "di_tester".

RAW MODE

5) Set the username. From a command prompt, enter something like this:

 SET REMOTE_USER=di_tester

6) Select "raw" mode, but no template. From the same command prompt:

 SET QUERY_STRING=raw

 SET PATH_INFO=

7) Run dlcgi.exe. From the same command prompt:

 dlcgi

You should get output in a computer-parsable format showing for example,

12/10/2012 Page 6

di_tester and a one-time password. You can now use this password,

once, for the next 2 minutes, in ProDiver or DivePort to gain access

as this user.

TEMPLATE MODE

8) Setup a template. For example, see "diveport.html" in DivePort’s dlcgi

 directory. Note how it contains $DL_USER and $DL_PASSWORD. dlcgi will

 read the template in, perform $ substitutions, and then write the

 result to standard output.

 Put a template in the above-chosen templates directory. For example,

 put the supplied diveport.html there.

9) Set the username. From a command prompt, enter this:

 SET REMOTE_USER=di_tester

10)Select the template mode, but not raw mode. From the same command

 prompt:

 SET PATH_INFO=/diveport.html

 SET QUERY_STRING=

11)Run dlcgi.exe. From the same command prompt:

 dlcgi

The result should be the contents of the diveport.html file with the

one-time username and password plugged in. If this were returned to

the user's web browser, the browser would redirect them to DivePort,

passing the username and one-time password as parameters in the URL.

Note that other text files could be used; for instance, a JSON-style

object with $DL_USER and $DL_PASSWORD, if you'd rather handle the

redirect manually but not write code to parse the "raw" output.

